If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-18=16^2
We move all terms to the left:
b^2-18-(16^2)=0
We add all the numbers together, and all the variables
b^2-274=0
a = 1; b = 0; c = -274;
Δ = b2-4ac
Δ = 02-4·1·(-274)
Δ = 1096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1096}=\sqrt{4*274}=\sqrt{4}*\sqrt{274}=2\sqrt{274}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{274}}{2*1}=\frac{0-2\sqrt{274}}{2} =-\frac{2\sqrt{274}}{2} =-\sqrt{274} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{274}}{2*1}=\frac{0+2\sqrt{274}}{2} =\frac{2\sqrt{274}}{2} =\sqrt{274} $
| (x+5)(x-5)=x(+5x) | | 6x^2+3x-4x^2=0 | | 30=0.5*9.81*t^2 | | 8x+3+8=10 | | -14+5x=-6(1+4x)-8 | | (x+5)(x-5)=x(-5x-10) | | (x+5)(x-5)=x(+5x+10) | | 15x+14=299 | | -3j=-3-6j | | 3p+10=5p-10 | | (x+5)(x-4)=x(+7x+20) | | -6r+8=-10-6r | | a^2+8a-10=0 | | -6w-4w=-10w | | r^2-29=0 | | 4n+3-2n-7=20 | | 11d-9d=5d+28 | | 1.2x-5.3=7x-3.7 | | F(10)=2x-3 | | (9x+2)=(2x+20) | | F(x)=110 | | (9x+2)=(5x-18) | | 5(x+4)=3x=28 | | (2x-2)+(4x+2)=180 | | 15=7(4p+1)+8(1+6p) | | (2x-29)+(7x+2)=180 | | (2x-29)=(7x+2) | | (5x+24)=(6x-6) | | 3(x-2)^2=66 | | (3x-23)=(7x-7) | | (3x-23)=(7x07) | | (5x+15)+(3x+15)=180 |